Control of Hardening Concrete

•b4cast

simulation of temperatures, strengths and stresses

•Heat-Box

Measuring of Heat of Development

HeatWatch

Monitoring temperatures, maturities and strengths on site

Durability/Serviceability/ Appearance

It is very important to be careful about the hardening process of concrete. Inappropiate construction methods can cause:

- Freezing before the concrete is strong enough
- Too early evaporation leading to a weak cover layer
- Too high temperature differences leading to crack-formation
- Lack of final strength due to too high temperatures
- Lack of strength at form-removal, prestressing or loading

Construction Method

- In all cases the concrete structure will be directly damaged and the durability, functionality and appearance will be substantially reduced.
- On the other hand it is also important not to make more arrangements than neccesary.
- By making a simulation prior to start-up of a project the risk of damages are reduced or eliminated.

Objectives

- Thermal Analysis (freezing, early evaporation, strength)
- Stress Analysis (crack-formation)
- Evaluate alternatives
 - Concrete mixtures
 - Placing sequence
 - Artificial cooling
 - Thermal protection

General Process

Thermal Analysis

Heat of Hydration (Heat-Box)
Initial Temperatures
Thermal Boundary Conditions

Thermal Analysis - Results

History and distribution of:

- Temperature
- Maturity
- Material Properties for evaluation and as input for stress analysis
- Thermal strains as input for stress analysis

Stress Analysis

- Thermal Strains
- Mechanical properties as thermal expansion, E-modulus, autogenous shrinkage, creep (functions of temperature history)
- External supports
- Self weigth

Stress Analysis - Results

History and distribution of:
Stress-components
Ratio between maximum principal and actual tensile strength (exploitation)

External restraining

Internal restraining

Max. temperature

T = 24h

T = 120h

Improving Construction Method

- Location of construction joint
- Placement sequence
- Casting schedule
- Selection of form materials
- Times at which formwork is removed
- Use of insulation
- Use of cooling pipes/heating cables
- Use of cold/warm concrete
- On-site monitoring of temperatures

Materials

Material Properties

🖆 Material		-
Material Name Cor	n1	Description
 Maturity based o 	on Arrhenius	
Ref. Temperature	e 20.	0 °C
Activation Energy	y Factor I 335	500.0 J/mole
	, ructorn	
Maturity based of Datum-Tempera	on Nurse-Saul	°C
 Temperat 	ture-Time	
Equivalent	nt time Ref	f. Temperature 23.0 °C
	[
Powder Content	344 kg/m³	Heat Generation
Density	2350 kg/m³	Tensile Strength
Heat Capacity	1.03 kJ/kg/°C	Compression Strength
Th. Conductivity	8.0 kJ/m/h/°C	Mechanical Properties
		<u>.</u>
Import from Lit	brary	Export to Library
Delete Mater	rial ?	Cancel OK

Heat Development

Semi-adiabatic calorimetry Heat-Box

Heat-Box

×

Creep Model

• Values specified as function of maturity

Construction Method

- Define volumes corresponding to different placements
- Specify times of placement of each volume
- Boundary conditions for surface of volumes
 - Insulation properties of formwork (database)
 - Ambient conditions (time histories)
 - Presence of cooling pipes (database)

Definition of Castings

🛃 Volume				<u>x</u>	srochure-tempstress400	x
						End Wall
Volume name	Wall					Find Wall
Cross Section	End Wall Foundation Wall	new cross s	section section		Wall	
From z-coordinate	0.75 m	To z-coordinate	5.00] m		
Time of placing	0.0 hours	Initial temperature	20.0] °C	y I I	End Wall
Material	Hetek old Load from Libra				Wall z x Foundation Foundation Foundation	
Self-weight releas	sed at	hours	Delete Cancel		Foundation	
Coarse Mesh, Lon	gitudinal ss-Section	?	ОК			▼

Definition of Formwork

Shield	S brochure-tempstress400
Shields New Model Formwork Top	Top
Identification Time of placing Time of removal	
hours	
Plywood 21 mm 0.0 120.0	
Taupaulin 120.0 240.0	
New/Edit Shield Cancel OK	

Definition of wind-speeds

Definition of ambient temperatures

Transmission coefficients

Cooling/Heating pipes/wires

11					23	🛓 brochure-tempstress400	C
Identification	Pipe 1	x-coordinate	Layout y-coordinate	z-coordinate			-
On	12.0 hours	m	m	m			
on	12.0 10013	1.00	1.30	0.00			
0.44	36.0 hours	1.00	1.30	4.70			
OII	100.0	1.00	1.60	4.70			
		1.00	1.00	0.00			
		Load fr	om File				
Cooling pipe							
Туре	PEL28/32 🔻	New/Edit					
Flow	2.4 m	²/h				Direct	
_						FIDE	
Open circuit Inlet-Temperature 12 dgr							
Closed circuit without cooling							
Closed circuit with cooling Effect k.l/h							
	Tai	rnet Temperatu	re	۹C			
	Tu.	got romporate					
Heating cable							
	none 💌	New/Edit					
	Delete	Cancel		ОК	?		_

Open circuit

hours

Closed circuit

Automatic meshing

Advanced Parameters		🕌 brochure-tempstress400
Time Step Model	TimeTime Stephourshours0.02.0	
Time Step Factor	0.50	
Convergence Criteria	0.0015	
Size of elements	0.39 m at the surface	
	2.00 m at the distance 0.50 m	
	0.08 m at cooling pipes/heating wires	
	0.50 m at the distance 0.10 m	
	5.00 m at infinity	
Zenith Vector x	0.00 m Cancel	
у	1.00 m	
Z	0.00 m ? OK	
Calculate Strains		
		t.com

Meshing

Density: •at surface •at distance x •at infinity

Density of mesh

Meshing

Examples

Examples

Cooling

Temperature histories

Temperature distribution

Same for maturity and strength

Early exploitation at surface

Exploitation at core after hardening

Verification on site: HeatWatch

Monitoring and logging temperatures

Calculating maturity and strengths based on userinput

Fulfilling the requirements concerning freezing, evaporation, differences in temperature, maximum temperature level and strength.

HeatWatch

10-30 Thermocouples

Connected by Internet or wireless local network

Also mV and mA can be monitored and logged

Warnings by SMS or email

Web-interface showing instant values

HeatWatch

Averages and differences on measured data can be defined by the user

Units User-defined units

Variable	Label	Conversion factor	Default-unit	No. of digits	
Time	hours	1.0	hours	1	
Dimension of structure	m	1.0	m	2	
Dimension of cross-sec	m	1.0	m	3	
Dimension of shield	m	1.0	m	3	
Thermal Conductivity	kJ/m/h/°C	1.0	kJ/m/h/°C	1	
Heat Capacity	kJ/kg/°C	1.0	kJ/kg/°C	3	
Density	kg/m³	1.0	kg/m³	1	
Heat Generation	kJ/kg	1.0	kJ/kg	1	
Cement Content	kg/m³	1.0	kg/m³	1	
Activation Energy Factor I	J/mole	1.0	J/mole	1	
Activation Energy Factor II	J/mole	1.0	J/mole	1	
Coeff. of convective tran	kJ/m²/h/°C	1.0	kJ/m²/h/°C	1	
Flux	kJ/m²/h	1.0	kJ/m²/h	1	
Coeff. of radiation	kJ/m²/h/°C²/°C²	1.0	kJ/m²/h/°C²/°C²	1	
Wind Speed	m/s	1.0	m/s	1	
Effect	kJ/h	1.0	kJ/h	1	
Effect-line	kJ/m/h	1.0	kJ/m/h	1	
Flow	m³/h	1.0	m³/h	1	
Load	MN/m²	1.0	MN/m²	1	
E-modulus	MN/m²	1.0	MN/m ²	1	
Thermal expansion coef	-3	1.0	-	7	
Stress	MN/m²	1.0	MN/m ²	1	

Temperature Celsius °C

Default

-

Cancel

?

OK

600

Reports

All software delivers printed reports

4			-				x
L	_abel1	DanTysk	(Label2	Grouting below w	a	
		View show Text grout-dia + Grout steel-dia + Steel Iso + Basic Input				Select all Deselect all Delete all	
	 Volumes Cross-sections Materials Boundaries Cooling Pipes/Heating Cables Specification 					? Cancel OK Print	